
r 236 TMANSFiATIONS OF CONCIMlENT NLORITHMS FO NINLY Li
PARLEL SYSTEM: A 0.. (U) INDIAM UNIV AT BLOOMINGTON
DEPT OF COMPUTER SCIENCE 0 GAM1O0N OCT 67

UI NLSSIFIED NFOSR-TR-7-1737 AFOSt-4-9147 F/ 12/6 ML'El' F, llllllI

IL

Q8 ".

P.2-

. Hll l EI~ 12

IL 6
1 '22

_1111J.

Jll .2 5 III 111.

I .a

w w ---

WMY I W

REPORT DOCUMENTATION PAGE
Q1Ip.OUY gAIT~ -LASFCA?'OPO it. AESTfleCTIvS aI ~ G

uNCLASSIFIED
~ .,S hI~*'3, OISVRIOU II4A VAI LAS ILI TV OF 4EPOPIT

Approved for public release; distributlion!

AD- A190 236 5gS . MONITOR0011GRGANIZATION REPORT NUMdIS11S

6& AOORaS8 (Cep. J840 ME zip cde 71& o s A OPISS(~V lt 0 ZUN I P Coe wa. IL I
Dirctoate o C hmaia & ~ 11MWa

buScenes BolingAF DC 20332-6448 612 34A

TBlnsomgon Inin

I&. N@AM0 UNOAWOSumryRpot

4. 5ADM20 N (00. aTii WowlI.NUISOFPNGNS

4vE '% NO.u SU.OR

ThspoetTasivsiae ransformations of aocretAgrf Qf, 4~~ nrlgo1 rthPm fo highl cocr r-et
4 ~ I sys00tems AToRS tehia eot eutn rmhSuresarch whR hweecopltdturn

parlle compters and6 1Sraege foraC cacheIII aiiMn locai miesmry managent bv rogramr

Thspoet a netgtdtransformationsolrihs fobhglonurtS LECTE
JN06 1988

21L O5TRISUTIONIA VAI LAS JTY Of LOSTRACT 1 A5ITRAc CUAT CLM IC HO
wNCLImaO/UNLMITSEO s~ma As m-T. 0 oanc u.mas 03 UCLASSIFIEID

-2 MAR OP 04PNGSaLeAa INOIVOOUAL 13 tL8P Cp's MUN11141 01.c SVIgOL

00Ib Am*g Cadal

Ma*. John Thomas 1(202) 767-5026 N

CC FORM 1473 . 83 APRI4TION OF i JAN 73 IS OSOLT UNCLASSIFIED
SECURITY CLASSIPICATIO#. OP THIS PA"t

87 i; ... ,

AF06R.Th. 87- 1737

Transformations of Concurrent Algorithms for Highly
Parallel Systems: A One Year Project Summary Report.

Dennis Gannon

Dept. of Computer Science Indiana, University Bloomington, Indiana

ABSTRACT

This report describes the activities carried out under AFOSR V
GRANT 86-0147 covering the period from the starting date to Oct.
1. 1987.

'(" ?~)i ... 1 %

1. INTRODUCTION
)It has become a certainty that Multiple Instruction Stream, Multiple Data

Stream (MIMD) parallel architectures are going to play a major role in all aspects
of high speed computer design for the foreseeable future. What is not clear is
whether we will be able tI devise a means to design algorithms and software for
these machines that transcends our current ad-hoc, nonportable techniques. In
this research project we have focused on the portability issue from the perspec-
tive of parallel algorithm design and how it effects the internal organization of
advanced compilers. The eventual goal of the project is to produce an "expert
system" that can help users transform large, complex applications from one %
highly parallel machine to another. Our basic strategy has been to follow the fol-
lowing plan:
1. Build an experimental research laboratory for parallel computation:

Parallel computation has both a theoretical foundation and an experimental
component. Because we are interested in both the process of porting programs
and the behavior of the algorithms on different target machines, it was essential
to build a laboratory for parallel computation. With help froralhe AFOSR and
ONR University Instrumentation Program (and nearly $400,000 from the univer-
sity) we established a parallel computation research lab. The lab houses two
machines of great interest to us. One is a 16 Processor BBN Butterfly parallel
shared memory computer. The other is an Alliant FX/8 4 CE vector multipro-
cessor. These two systems provides an outstanding basis for research on the por- %
tability problem because they have radically different architectures but are both ion For
still classified as shared memory parallel computers. ORA-I

2 Design an experimental program of research that would shed light on the .B 0]
problems involved with restructuring parallel programs for different c(-.d

machines. ._

Because the objective is to build tools that "understand" the problems of
parallelizing programs for given machines, we needed experience in seeing how,------
algorithms work and how they differ in the organization of the parallelism when b t --

optimized for these two machines. In section 2 of this report we will summarize v Cudlor S

-)Is t Special

n T' I

r 0 rTE
%I

4 ~% ~ S ~.*%~%~~'%' N. ~~ 5~SV5 ~ %

-2- 3

the algorithms that we worked with and briefly describe some of the results.

3 Attempt to provide a mathematical characterization of the properties of the
machines and how algorithms must be restructured to run on them. I

So far we have focused on the properties of memory hierarchy such as cache
memory and processor local memory. We have developed a mathematical model
of how cache behavior can be related to program data dependencies. This work
was done in collaboration with William Jalby of INRIA in Paris an4 Kyle Gal-
livan of CSRD in Urbana. The results were presented in an invited paper in the
first international conference on supercomputing l -Athens Greece in July of
1987. A copy of this paper is included as air ppendix to this report. The next
step is to design a mathematical model of task granularity and synchronization.
We are still working on this problem and should be able to report some results by
the end of the contract period.
4 Attempt to design a model of machine architecture that can be embedded

into the inference engine or knowledge base of an expert system for program
restructuring.
Our first attempt at this is nearly complete. Graduate students Ko-Yang

Wang has designed a prototype inference system for restructuring programs. The
system works with the user who selects the part of the program on which to P_
focus the systems expertise. The system then consults the knowledge base that
describes the properties of the target machine and derives a suggested sequence of
program transformations that best optimizes the section of code for execution on
the target. A preliminary report on the ideas in the system has been written and
will be published in a volume edited by Doug DeGroot and Kai Hwang on super-
computing and A.I. machines. A copy of this report is attached as an appendix
to this report.

2. ALGORITHM EXPERIMENTS
Our experimental philosophy is to lean the what an expert system for pro-

gram restructuring should do by lNecoming experts at porting and restructuring
codes for different parallel machines. We have spent 10 years at this with a
variety of prototype machines and now one year with our own laboratory facili-
ties. A large number of experiments have been carried out. Because this work
has not been published anywhere we thought it would be a good idea to give a
bricf summary of this activity here.

Our target machines include the two systems that we operate in our lab.
One is a 16 processor butterfly shared memory computer and the other is an Alli- -.'p
ant FX/8 with 4 vector processors. There are four experiments described here.
Two are complete and two are still in progress. All of this work was supported,
at least in part, by this grant.

Ray Traced Computer Graphics. %e

This experiment was carried out to test the problems of extracting the :1
parallelism in an application that is very computationally intensive but also has
data structures that are more closely associated with recursive algorithms than
the traditional numerical codes. The algorithm works by following optics in
reverse. Light rays are "traced" from the eye of the viewer back into the scene

-.

;; ",,.":"-'', "

-3-

where they reflect off and refract through objects. Because each ray is indepen-
dent of all of the others the task is completely parallel. One processor can be
assigned to each light ray and massive parallelism can be obtained. This was
done by a team of students for the butterfly and reasonably good performance
resulted.

The primary problem was that the object data base was stored in globally
shared memory and each processor needed constant access to this data base.
Because a global memory module can only be reference at constant rate and only
one processor may have access to the data in that memory module at any given
instant of time, there is an upper bound on the number of processors that may
share an object that they frequently reference without causing some conflicts and
delays. By distributing the shared data through the set of memory memory
modules in a uniform manner, we were able to reduce the contention and increase -.

performance.

An important lesson was learned here. For large shared memory parallel
systems the distribution of data can, and must, be a major task of any compiler
that tries to optimize performance.

The Alliant FX/8 presented a different set of problems. First, the processor
on the Alliant machine contains complex and powerful vector hardware. The
problem is that it is not easy to exploit on this algorithm. We did, however, dis-
cover that there are a number of ways that it can be exploited for simple com-
putations that must be carried out for each ray. For example, each ray must be
intersected with each object in the scene (for a simple ray tracing algorithm).
This process may be easily vectorized and good performace results. For more
complex algorithms this task is not needed. We are still studing the problem of
how to provide effective exploitation of vector hardware on the problem.

Numerical FFT algorithms.
Numerical FFTs are just one of many numerical computations we have

worked on. In all cases we have found one striking difference between the
effective use of the parallel hardware one our two systems. In particular, we
have discovered that on the Alliant system the memory hierarchy is such that
processors "like" to share common data (because it may be kept in the shared
cache). Furthermore, because the cost of bringing data into cache from shared
memory is relatively high, it is best to try to make sure that all required refer-
ences to a data item by all processors occurs while the data is in cache. While
this may seem obvious, it has strong implications about the way algorithms are
organized. In fact, Jalby, Meyer, and Gallivan have shown that a block struc-
tured algorithms achieve the best performance on the machine. Based on their
results we (Jalby and Gannon) designed an FFT library for the Alliant that is
very fast and we are now incorporating the block structuring transformations
into the programming tools system.

On the Butterfly there is no shared cache and no strong need to do blocking.
However, there is a related problem and solution. The memory on the
butterfly is local. This means that when data is in a local memory the access is
much faster than if it is far away. We discovered that the same analysis that
was needed to keep data in cache for the Alliant could be used to decide which

% % 1N1-_A':""-.1 I-
e. eze:.

a.. -4-

data must be kept in the local memory of each Butterfly processor. This was a
rather striking discovery which has led to uniform model of cache management
described in the attached paper.

Artificial Intelligence, Production Systems and OPS 5.
Two other algorithm application areas that we hare looking at are related to

Artificial Intelligence and Expert Systems. One is Neural Network Modeling
which will not be described here and the other is parallelism experiments with
the production system language OPS5. Production system are used in the
inference engines of expert systems. One of the most common is OPS5 and it is
based on a tree resolution method called the Rete Match algorithm. We have
now completed one implementation based on using butterfly Lisp on the BBN
system. This proved to be far too slow partially due to compiler problems, but
mostly due to the fact that the obvious ways to try to use concurrency in the
match algorithm do not work. (This fact has been reported by several people in
the literature).

We have started a new effort that will focus more energy on the lower levels
of the computation that should prove to be effective for both the Alliant system
and the Butterfly. We will report on the final results or this study in our final
report.

Genetic Algorithms.
This work is being done by graduate student J. Y. Suh under the direction

* of faculty member Dirk Van Gucht. Genetic algorithms are an optimization
technique that uses simple ideas from evolution theory to solve optimization
problems. In this exercise we started with a good serial C program for doing a
genetic optimization of the traveling salesman problem. We then did a mechani-

* cal set of transformations to come up with a reasonably good Butterfly version.
A series of test were made which showed moderate performance improvements
that resulted in speed-us of about 12 on a 16 processor machine.

By looking at where the restructured algorithm failed to perform with per-
fect speed-up he noticed that the serial algorithm was bound by a centralized
control mechanism that inhibited parallelism. By focusing on this problem was
able to design an completely new "distributed" genetic code. The new code has
been run on Butterfly systems with as many as 128 processors with speed-ups of
over 120.

3. FUTURE WORK
We feel that our attempts to help automate the process of restructuring

serial program are going very well and that these tools that we are building are
essential if we have any hope of solving the portablility problem. However, one
clear message that has emerged from our experimental work. It is not possible
to derive the OPTIMAL algorithms for any given computation by a purely
mechanical set of transformations to the source code of a good serial algorithm.
Algorithm RETHINKING is needed to do that. The important question to ask I

is what sort of tools are needed to help programmers with this process. It is our
conclusion that the direction that we need to take this work is to find way to

%rLPPPWL~i1VIAAVU1 IN

-5-

help programmers with the process of redesigning algorithms.
Again, it is our experimental work that has led us to a way to solve this

problem. The process that is usually followed by programmers in finding a new
algorithm is to try to discover exactly why the old one failed. He does this by
testing the program and isolating the serial bottlenecks in the computation and
understanding why they take the form that they do. It is this process where,
programmer need the most help.

Our next set of tools will be built to help users identify serial bottleneck in
algorithms. We will do this by building a a performance estimation "took kit"
based on our research on estimating speed-up and memory hierarchy (cache and
local memory) modeling theory. A full report on some initial experiments with
this project will appear in the final report for this project.

]LA
t

, I- -, -. -1 J -, -, -- -

N C

Zpp

